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The interaction between shear and buoyancy effects for BBnard convection in plane 
Couettc flow is studied by performing direct numerical simulations. At moderate 
Rayleigh numbers ( M 10000-50000), shear tends to organize the flow into quasi-two- 
dimensional rolls parallel to the mean flow and can enhance heat transfer, while a t  
higher Rayleigh numbers (>150000), shear tends to disrupt the formation of 
convective plumes and can reduce heat transfer. A significant temporal oscillation in 
the local Nusselt number was consistently observed a t  high Rayleigh numbers, a 
factor that may contribute to the scatter seen in experimental data. This effect, plus 
the time-varying reversal of the mean temperature gradient in the middle of the 
channel, is consistent with a flow model in which the dynamics of large-scale, yuasi- 
two-dimensional, counter-rotating vortical cells are alternately driven by buoyancy 
and inertial effects. An analysis of the energy balance in the flow shows that the 
conservative pressure diffusion term, which has been frequently neglected in 
turbulence models, plays a very important dynamical role in the flow evolution and 
should be more carefully modelled. Most of the turbulent energy production due to 
mean shear is generated in the boundary layers, while the buoyant production occurs 
mainly in the relatively uniform convective core. The simulations and the laboratory 
experiments of Deardorff & Willis (1967) are in very reasonable qualitative 
agreement, suggesting that the basic dynamics of the flow are being accurately 
simulated. 

1. Introduction 
Laminar and turbulent Bknard convection has been the subject of intensive 

theoretical, experimental, and numerical study in recent years. However, in many 
important engineering and geophysical flows, thermal convection occurs in the 
presence of mean shear. For example, in heat exchangers, one fluid is often pumped 
through pipes or channels to enhance the heat transfer with the other fluid. The 
resulting flow is a complex interaction between buoyancy-driven and shear effects. 
The presence of background shear can very dramatically alter the dynamics of the 
flow, so a better understanding of these effects is essential for the development of 
better techniques for simulating and modelling such flows. The interaction between 
convection and shear is also very important in geophysical flows in the atmospheric 
and oceanic boundary layers. 
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There are two useful dimensionless quantities for 
flows. First is the Richardson number: 

Metcalfe 

characterizing convective shear 

where g is the gravitational acceleration, a is the coeficient of thermal expansion, 
' r ( z )  and U ( z )  are the mean tcmperature and velocity respectively, and x is directed 
upuards. opposite to g .  The other convenient parameter is the Monin--0bukhov 
length : 

(2) 
'G L = -  

where u* is the friction velocity (Monin & Yaglom 1979). q is the vertieal heat flux. 
c p  is the specific heat a t  constant pressure, po is a reference density of the fluid and 
k is the von KBrmLn constant. For unstable conditions, both Ri and 1, are negative. 
Most research on unstable convective shear flows has focused on two limiting cases : 
Ri + - co (or z / L  + - a), and Ri --f 0- (or z/L+ 0), where 0- indicates that zero is 
approached through negative values. In  the first case, buoyancy forces dominate, 
while in the latter, shear effects are most important, so that the tcmperature.field 
acts as a passive scalar. 

Free convection has been extensively studied for B h a r d  convection in a layer of 
fluid between two horizontal, parallel plates heated from below. In this case, the 
important non-dimensional parameters are the l'randtl number : 

1% = V / K ,  ( 3 )  

where v is the kinematic viscosity and K is the thermal diffusivity, and the Rayleigh 
number : 

Ru = (Igl C X / K V )  A T d 3 ,  (4) 

where AY is the temperature difference between thc ylatcs separated by a distance 
d .  Early work on the stability of the Benard problem is discussed by Chandrasekliar 
(1961). The experimental work of Malkus (1954), Deardorff & Willis (1967), 
Krishnamurti (1970a, 6. 1973) and Brown (1973) revealed a number of discrete heat- 
flux transitions with increasing Raylcigh number. In addition, Krishnamurti ( 1973) 
documented experimentally the existence of different flow regimes in the (Ra, Pr)- 
plane with the complexity of the flow field increasing from quiescent to fully 
turbulent with increasing Rayleigh number. This increased complexity is manifested 
by the appearance of temporal oscillations of the velocity and temperature fields as 
documented by Deardorff & Willis (1967), Willis & Deardorff (1965, 1970), Rossby 
(1969) and Krishnamurti (1970a, 6). In  addition, the spatial power spectrum of the 
temperature field broadens (Willis & Deardorff 1965). The experiments of DeardorfT 
& Wdlis (1967), Goldstein & Chu (1969), and Chu 62 Goldstein (1973) provide 
important data on B h a r d  convection for high Rayleigh numbers in the turbulent 
regime. 

Theoretical work has concentrated on stability analysis, predicting as the only 
stable flow parallel convective rolls for slightly supercritical Rayleigh numbers in an 
infinite layer between two rigid plates (Schliiter, Lortz & Busse 1965). Transition to 
time-dependent BBnard convection was investigated by Busse (1972) and Clever & 
Busse (1974). Classical experimental work and stability analysis do not provide 
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detailed quantitative information about the full velocity and temperature fields 
under these conditions. They are generally concerned with the global properties of 
the convection, such as heat transfer, transitions between different flow regimes, the 
structure of the convective cells, etc. Detailed measurements of the velocity field a t  
one point in Bdnard cells are possible using LDV techniques as demonstrated by 
Berg6 & Dubois (1976), Dubois & Berg6 (1978), Ahlers & Behringer (1978), and Gollub 
et al. (1977). Still more detailed information about the entire velocity and 
temperature fields may be obtained from the accurate numerical solutions of the 
equations governing natural convection. This approach was used by Lipps (1976) to 
investigate thermal convection in air for Rayleigh numbers between 4000 and 25 000. 
Numerical methods were used by McLaughlin & Orszag (1982) and Curry et al. (1984) 
to investigate transition to chaos in BBnard convection. Direct numerical simulations 
of turbulent convection can encounter resolution problems, as discussed by 
Grotzbach (1983). Since this serves to limit the Rayleigh number of the flow that can 
be accurately simulated, the largest Rayleigh-number simulations reported so far in 
the literature are for R a  = 380000 (Grotzbach 1982; Eidson, Hussaini & Zang 1986). 
Convection with higher Rayleigh numbers was numerically simulated by Daly (1974) 
using a turbulence model and by Eidson (1985) using subgrid-scale modelling. 

In  the case of forced convection (Ri --f 0_, z /L  + 0-) for moderate Prandtl numbers, 
the Reynolds analogy between momentum and heat transfer in turbulent flows, 
which states that the turbulent Prandtl number is constant and close to unity, can 
be used. The Reynolds analogy and departures from it in the wall region are 
discussed by Hinze (1975) and in the geophysical context by Monin & Yaglom 
(1979). 

The regions of frev and forced convection are separated by a region where the 
effects of shear and convection may be equally important. The effects of moderate 
shear on thermal convection were investigated by Hart (1971) and Sparrow & Husar 
(1969), who performed experiments on an inclined heated plate. I n  his experiments, 
Ingersoll (1966) used a cylindrical container with a heated lower wall and the upper 
wall rotating about a vertical axis. The experiments of Richter & Parsons (1975) were 
performed in a large-aspect-ratio square container with a heated lower wall and an 
upper boundary moving horizontally. The main qualitative conclusion from these 
experiments is that the presence of the vertical shear organizes convective rolls in the 
direction of the mean velocity and suppresses rolls in the direction transverse to  the 
mean flow. The stability analysis of Kuo (1963) and the two-dimensional numerical 
simulations of Lipps (1971) are consistent with these experimental results. Clever & 
Busse (1977) and Clever, Busse & Kelly (1977) investigated theoretically transition 
from purely two-dimensional steady convection rolls to three-dimensional convection 
in the presence of vertical shear. The only numerical investigation of three- 
dimensional convection in plane Couette flow with heated boundaries known to the 
present authors has been reported recently by Hathaway & Somerville (1986). 

The most important quantitative global effect of the mean shear is a modification 
of the heat transfer. There is a controversy in the literature as to the direction of 
change in the heat transfer when a mean flow is present. For example, Hathaway & 
Somerville (1986) reported that, for small shear, the heat flux is lower than for the 
unsheared case and the same Rayleigh number. However, they found that when the 
shear becomes larger, the heat flux also increases. Similarly, the two-dimensional 
numerical results of Lipps (1971) for convection with shear for Pr = 0.7 and ECL in the 
range 10000 to 40000 give a consistently greater heat flux than corresponding results 



502 J .  A .  thmaradzki and K. W .  ililetcalfe 

of ('lcver &, Busse (1974) for unsheared cases. On the other hand. the experiments of 
lngersoll (1966) indicate a lower heat flux in the prescncc of shear. For atmospheric 
boundary-layer flows. the non-dimensional heat flux is practically unaffected by 
shear even for low Richardson numbers of around -0.02. For still higher values of 
shear with Richardson numbers above -0.02, the heat flux is increased by the 
presence of shear (Monin & Yaglom 1979. figures 51 and 67). Such diverse results 
c*ertainly suggest that  thr  interaction between heat transfer and mean shear involvcs 
some rather complex dynamical processes. Moreover, the accurate experimental and 
numerical data on three-dimensional convection with shear arc rather scarce, 
especially in the range of Rayleigh and Richardson numbcrs in which the effects of 
shear and buoyancy are comparable. 

The objectives of this work are to perform accurate numerical simulations of 
turbulent convection with mean shear in order to address some of these questions 
and to enhance our understanding of such flows. As a model problem we have chosen 
plane C'ouette flow with a heated lower boundary. Though some of the results were 
obtained for low Rayleigh numbers, we were generally interested in the range of 
Rayleigh numbers above 30000 where the BBnard convection in air without shear is 
known to be turbulent. We have investigated the time dependence of temperature, 
velocity and heat flux in our runs, since this information is usually difficult to obtain 
experimentally but is easily available in the numerical simulations. An analysis of 
the kinetic-energy-balance and thermal-variance equations provides insight into the 
dynamics of the flow ficld, and provides useful information about the behaviour of 
terms important in turbulence modelling. As a by-product of this investigation we 
have established some useful criteria for determining spatial and temporal resolution 
requirements for accurate simulations at given Rayleigh and Richardson numbers. 

2. Equations of motion 
The physical problem of convection in plane Couette flow (figure 1)  is described by 

the following standard set of hydrodynamic equations with the Boussinesq-Oberbeck 
approximation : 

atu = ux0-a!Fg-v7T+vv", (5a) 

a,T = - V - ( U T ) + K V ~ T ,  ( 5 b )  

v - u  = 0, (Sc) 

where u(x, y, z ,  t )  = (u, v, w) is the velocity field, T ( x ,  y, z ,  t )  is the temperature field, 
and is the departure from the linear profile defined below. The mean velocity U ( x )  
with non-vanishing vertical shear aU(z) /az  is directed along the x-axis. The 
Kavier-Stokes equations ( 5 a )  are written in the velocity-vorticity formulation with 
the vorticity o = V x u and the pressure head 7~ = ( l / p , ) p + + { ~ 1 ~ ,  where p is the 
pressure and po is the reference fluid density. In the above equations v is the 
kinematic viscosity, K is the coefficient of the thermometric conductivity, a is 
the coefficient of thermal expansion and g is the gravitational acceleration. 

In  our simulations, it is assumed that fluid is contained between two rigid plates 
separated by the distance d. There is a constant positive temperature difference AT 
between the lower arid upper plates. The plates move with uniform velocity iAl7 in 
opposite directions in horizontal planes so that the velocity difference between the 
plates is AU.  For numerical convenience, the components of the velocity and 
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FIGURE 1. A schematic diagram of plane Couette flow with heated boundaries. 

temperature fields contributing to the mean linear vertical gradients are factored 
out:  

AT 
d 

T ( x , y , ~ , t )  = T,--(z- id)+p(, ,y ,z , t ) .  

It is assumed that ZE[-@, +@] and U ( - @ )  = -$AU, U ( @ )  = iAU,  T(-+d) = 
To + AT,  and T ( + d )  = To, so that the boundary conditions for .ii and p are 

G(x, y, * i d )  = 0, q x ,  y, k i d )  = 0. (6a ,  b)  

For numerical convenience, we employ periodic boundary conditions in the 
horizontal directions : 

C(x+L,,y+L,,z) = .ii(x,y,z), ~ ( x + L , , y + L , , z )  = p(x ,y ,z ) ,  (6c,  d )  

where L,,Ly are the periodicity lengths. Note that while this facilitates the 
computation of statistical quantities over horizontal planes of homogeneity, it does 
impose a limit on the largest scale of the spatial features that can be generated in 
the simulation. Non-dimensional parameters governing convection with shear are the 
Rayleigh number Ra = lg( c r A T d 3 / ( ~ v ) ,  the Prandtl number Pr = v / K  and the 
Richardson number Ri = gadAT/AU2. While equations (5 )  are commonly non- 
dimensionalized to make their dependence on Ra,  Pr and Ri explicit, in our work we 
have used the dimensional form with values of the fluid properties in c.g.s. units 
corresponding to air, e.g. Pr = 0.71. 

The numerical simulations provide values of velocity and temperature on all mesh 
points a t  each time step. These values are then used to compute other important 
quantities: the mean temperature ( T )  and mean velocity ( u )  (the brackets (. . .) 
denote averaging over horizontal planes) ; and the normalized heat flux Nu (Nusselt 
number) and normalized momentum flux Mo in the vertical direction: 

(WIT')  - K a,(T) ( u ~ w ~ )  - a,+) 
, M o =  

K AT/d - u AUld ' 
NU = 

Here, and in subsequent formulae, primed quantities denote departures from 
the means ( u )  and ( T ) ,  which are sums of linear profiles, and (C) and ( p ) ,  
respectively. 
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Experiments of lkardorff & Willis (1967) provide information about the bchaviour 
of thc individual terms in the kinetic-energy and the thermal-variance equations, 
and wc have also computed these terms in our numerical simulations. The derivation 
of thcsc equations is formally the same as for turbulent fiows (Monin &. Yaglom 1979, 
p. 373) with the time averaging replaced by averaging 0~7cr horizontal planes. 

Thc kinetic-energy-balance equation can be written : 

+ v( (a, u; + a, 7 4 )  a, uj) fCDIss 

- t ak(Q2u; )  E,,,] Diffusion, 

Dissipation 

-4c(r~u;> EW 

+l~a,(U;(a3U:++;))  E,, (8) 

where we usc subscript notation u, = ( u ,  21, w ) ,  a, E a/ax,, and the summation 
conLention is assumed. Here, h2 = ~ ( U ' ~ + ~ / " ~ + W ' ~ ) .  All terms in (8) arc non- 
dimensionalizecl by ~ ~ / d ~ .  The terms Euw and E,, describe the process of energy 
production by the shear and the buoyancy, respectively. The effect of viscous 
dissipation is described by the terms Finally, thc terms Ep,,  E,,, and E N ,  are 
cncrgy redistribution terms due to pressure, convectivcl motions and viscous stresses, 
respectively, producing no net integrated change over the entire layer. Note that the 
dissipation term may be decomposed as 

v((a, u; + c ? ~  a, u;) = v((a, q (a, q> + m, u:) (a, q). 
Often in the literature the first term in this decomposition is termed dissipation, and 
the remaining term is added to the viscous diffusion term EN". This procedure is not 
generally correct since i t  is easily shown that ((a, u;) (a, u;))  is non-zero, for example 
for rigid-body rotation when the viscous dissipation is zero. For this reason we use 
the definition of dissipation in (S), which does not lead to such inconsistencies. 

The thermal \ ariance cquation is 

a,(T'2) = -2(w'T') a,(T) TPRU Produetion 

- 2 ~ ( &  T') (ai T ' ) )  TuISs Dissipation 

7 7  1 hc term describes production of the temperature variance by the buoyancy 
forces, 5'Lrss is its dissipation and the terms TTw and T',,,, are the redistribution 
tcrms that, integrated over the entirc layer of fluid, are zero. All terms in (9) are non- 
dimcnsionalized by A T 2 ~ / d 2 .  

We have also computed spatial energy and temperature spectra, dominant 
frcyucmck of the velocity and temperature field oscillations, time dependence of the 
Nrrsselt number, and the vertical structure of velocity and temperature variances. 
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3. Numerical methods and code validation 
The numerical code used in this investigation was developed in collaboration with 

Professor Steven A. Orszag. It is a modification of the FLOGUN code developed 
originally by Orszag & Kells (1980) to study channel flows. Equations (5) with the 
boundary conditions (6) were solved using pseudospectral methods as described by 
Gottlieb, Hussaini & Orszag (1984). In  the horizontal direction, the dependent 
variables are expanded in Fourier series, whereas in the vertical direction, a 
Chebyshev expansion is employed. Thus, velocity components are represented as 
foilows : 

with a similar representation for the temperature field. The original version of the 
FLOGUN code uses a full time-splitting scheme that is not divergence-free a t  the 
boundaries. This can create large errors in computed quantities near the boundaries 
(Gottlieb et al. 1984). For this reason we have employed the Green-function method 
on the pressure and viscous terms in ( 5 a )  as described by Marcus (1984). This method 
correctly imposes implicit boundary conditions for pressure and avoids the difficulties 
of the full time-splitting scheme. Two additional fractional steps involve the 
Adams-Bashforth method on the nonlinear terms in (5) and the Crank-Nicolson 
method on the convective terms resulting from the decomposition of u and T into 
linear profiles and perturbations (formulae before (6)). The third fractional step in 
the temperature equation (5 b)  does not require the Green-function method and 
consists of the solution of the conduction equation. We have established that this 
method is second-order accurate in time. It requires about 1 s of CPU t' ime on a 
Cray X-MP per time step for 32' (horizontal) x 17 (vertical) modes and 7.5 s for 
64' x 33 modes. 

The code was tested by comparing the results it produced with results previously 
published in the literature. It was also tested for self-consistency by comparing 
steady-state solutions obtained from it for different initial conditions a t  the same 
Rayleigh number. The results for Nusselt numbers obtained in two- and three- 
dimensional runs without shear compared very well with the results given by Clever 
& Busse (1974). The two-dimensional simulations of convection with shear agreed 
qualitatively and quantitatively with the results of Lipps (1971). 

We also ran simulations a t  the same Rayleigh numbers with different initial 
conditions : the velocity and temperature field initialized from the most unstable 
mode of the linear theory (Chandrasekhar 1961, p. 36) with the amplitude derived 
from Landau theory (Chandrasekhar 1961, p. 609) or a random temperature field 
with a white-noise spectrum and quiescent velocity field. Both initial conditions lead 
to the same final steady state, which is a good check of the self-consistency of our 
code. 

4. Spatial and temporal resolution requirements 
Before attempting direct numerical simulations of turbulent convection with 

shear, it  is important t,o establish criteria for determining the spatial and temporal 
resolution necessary for accurate results. In the range of Rayleigh numbers amenable 
to direct numerical simulations (Ra < lo6), the convection occurs in the form of 
dominant large-scale structures superimposed on small-scale turbulence. The 
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wavelength of the large-scale structures in free convection has been measured 
experimentally by Willis, Deardorff & Somerville (1972), Willis & Deardorff (1965) 
and Deardorff & Willis (1967), and their data are collected in a paper by Daly (1974). 
The requirement to accommodate in the computational domain at least one full 
large-scale structure imposes a lower limit on the periodicity lengths L, and I,,. At 
the critical Rayleigh number Ra, = 1707.8, the periodicity length should be L x 2d, 
growing to L x 6d at Ra = 6 x lo5, according to figure 1 in Daly (1974). In numerical 
simulations, this condition is not always met (for instance, Eidson (1985) uses 
L = 4d even for Ra > lo6), leading to an increase in the computed heat flux over that 
measurcd experimentally. Also, according to Manley & Treve (1981) and Constantin 
et al. (1985), for qualitatively accurate numerical solutions of the hydrodynamic 
equations, the mesh should be fine enough to resolve dissipation eddies. A similar 
constraint on the average grid size was used by Grotzbach (1983) : 

h = ( A x A ~ A z ) ~  6 TTk for Pr < 1 ,  ( 1 1 )  

where vk is the Kolmogorov lengthscale. As will be discussed in $5.2, to get accurate 
results in our simulations it became necessary to use a stronger condition than ( i l ) ,  
namely 

(12) 

Condition (12) should be applied away from the boundaries, where assumptions of 
homogeneous, isotropic turbulence are valid. In  the vicinity of the boundaries, the 
resolution is determined by the necessity to resolve a thin conductive layer of depth 
6, x 1/(2Nu). Grotzbach (1983) suggests that  a t  least three points are required in the 
conductive layer for turbulent convection, and Eidson et al. (1986) use a much higher 
resolution of eight points in the conductive layer. 

The existence of the mean flow implies a viscous layer of depth 8, z 1/(2Mo). 
Since, for Prandtl numbers around unity, the Nusselt number and the momentum 
number are of the same order of magnitude (Lipps 1971 ; Hathaway & Somerville 
1986), 6, x 6,; therefore, resolution adequate for the conductive layer is also 
adequate for the viscous layer. 

In  this work we are interested in the interaction of shear with convection when 
both effects are comparable. Therefore, it is important to  estimate the range of 
Richardson numbers for which energy production due to shear effects is comparable 
with the energy production due to buoyancy. The energy production by buoyancy 
forces takes place in a relatively uniform convective core and may be approximated as 

Ax, Ay,  Az 6 ?rTk for Pr < 1.  

E, w ag<T’w’) d, (13) 

where (T’w‘) is a value characteristic of the convective core (cf. equation (8)) .  The 
energy production due to  shear is 

m 

where -(u’w’) = u: is the approximately constant value of the momentum flux 
outside the viscous sublayer and u(z) is the mean velocity profile. From (13) and (14) 
and the requirement E, x E,, and assuming again that M o  w Nu, we get 

lRil w Pr (15) 

as a condition for the global effects of shear and convection to be comparable. 
To estimate time-step size, we found that it was convenient to use as a velocity 
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scale of convective motions an amplitude derived from Landau's equation 
(Chandrasekhar 1961. p. 615), 

A 2  = 160.46c(('"- d2 Ra, 1 ) .  

even though Landau's theory is formally valid only for (Ra/Ra,- I )  < 1 .  The 
amplitude A scales in the same way as the characteristic velocity used by Deardorff 
(1970) : 

(17)  
KV 

W: = g a A T d  =--a. 
d2  

Formula (16) was found to correspond more closely to the actual peak values of the 
convective velocity than (17) and, therefore, it was used for estimating time 
stepping. Based on (16), the large-eddy turnover time is 

r % nd/A, (18) 

and for accurate results it was necessary to use between 200 and 500 time steps 
(depending on the Rayleigh number) for one large-eddy turnover time. I n  cases with 
large shear, the number of time steps must be increased owing to stability restrictions 
on advective terms in (5). 

When simulations are initialized with a random temperature perturbation and a 
quiescent velocity field, convection develops in about two large-eddy turnover times. 
Usually one or two additional large-eddy turnover times are sufficient to achieve 
quasi-steady state, in which the flow evolution is much slower than in the transition 
period from the quiescent state to the convective state. For instance, Richter & 
Parsons (1975) measured the time t, required for developed convection in high- 
Prandtl-number fluid to reach steady state after impulsively switching on mean 
shear. When their results are expressed in terms of thc large-eddy turnover times 7, 
for moderate shear, t ,  5 7. Therefore, simulations should be run for about three to 
four large-eddy turnover times, corresponding to  about 2000 time steps to reach 
quasi-steady flow. Nevertheless, it is not practical a t  present to perform numerical 
simulations of turbulent convection for more than a few thousand time steps. 

5. Results of numerical simulations 
5.1. Case speci3cations 

It has been determined in the numerical simulations by Lipps & Somerville (1971) 
that transition from a quiescent state to fully developed convection is intrinsically 
a three-dimensional process. Even if the final state is purely two-dimensional, its 
characteristic wavelength is determined by the three-dimensional transient regime. 
For this reason, realistic numerical simulations of convection should be three- 
dimensional. Results reported later in this paper have been obtained from three- 
dimensional simulations. 

It is known that in the case of convection without mean shear, transition to 
temporally aperiodic convection occurs a t  Ra !z 12000 (Willis & Deardorff 1970), 
and convection becomes progressively more complex in space as well as time for 
larger Rayleigh numbers. However, Willis & Deardorff (1965) infer from their 
experiments that 'the dominant organized motions retain their identity even for 
Ra = 1.5 x lo6 '. Thcrefore, increased complexity of convection for increasing 
Rayleigh numbers is reflected mainly in the time dependence of convection rather 

17 FLM 193 
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Run 

1 
2 
3 
4 
5 

I C  

0 
1 
0 
3 
0 

Ra 

35 640 
35 840 
35 840 
35 840 
35 840 

Ri 

- m  
-03 

-2.0 
- 2.0 
-0.2 

L z  L, 
8 8 
2.67 2.67 
8 8 
2.67 2.67 
8 6 

h' 
32' x 17 
3z2 x 17 
32'x 17 
32' x 17 
322 x 17 

7 

0.22 
0.22 
0.22 
0.22 
0.22 

t At Nt 
1.66 0.0014 1000 
1.12 0.0007 1600 
1.67 0.0014 2100 
0.56 0.0007 800 
1.12 0.0014 800 

0.0005 
0.75 0.0003 2600 

0.4 0.0002 2000 
0.18 0.00006 3000 
0.20 0.0001 2000 

0.05 0.00005 1000 

~ 0 . 0 0 0 1  J 

0.000 1 1 
'1 0.00003j 

6 5 35 840 -0.2 2.67 2.67 322 x 17 0.22 

7 
8 
9 

0 
7 
0 

150 000 
150 000 
630000 

5 5 
5 5 
5 5 

64' x 33 
64' x 33 
64' x 33 

0.10 
0.10 
0.051 

--co 
-0.2 
- m  

10 9 630 000 -0.3 5 5 64' x 33 0.051 

TARLE 1 .  Simulation parameters. IC, Initial condition : 0, random initial condition; n, initial 
velocity and temperature field from the last time step of run 71. Ra is the Rayleigh number, Ri the  
Richardson number, L, and I,, the horizontal periodicity lengths in terms of the channel width u 
( = 1 ) .  N the number of horizontal and vertical Fourier modes in the simulation, T the  large-eddy 
turnover t,ime. t the t.otal time for the simulation, At the  time step, and N ,  the total number of time 
steps. 

than in its spatial structure. The term 'turbulent convection ' as used in this paper 
refers to the occurrence of significant aperiodicity in the time domain with the 
understanding that the flow may still appear to be quite organized in the spatial 
domain. I n  this sense, convection is turbulent for Rayleigh numbers above 12000. 

Table 1 gives specifications for the cases that were run. All cases in table 1 have 
Rayleigh numbers in the turbulence range above 12000. Runs 1-6 are €or Ra = 
35840, which is the same as in the two-dimensional simulations of convection with 
shear performed by Lipps (1971). Runs 7 and 8 are for Ra = 150000, which was the 
highest Rayleigh number that could be simulated accurately. Runs 9 and 10 are for 
Ra = 630000, which corresponds to experimental results of Deardorff & Willis 
(1967). Thc resolution used in runs 9 and 10 was inadequate for highly accurate 
results. However, we found that computed physical quantities outside boundary 
layers were in fair agreement with experiments, and we felt it was worthwhile to 
report this finding. In most cases, absolute values of Richardson numbers were 
slightly lower than the estimate (15). 

The choice of the aspect ratio of the computational domain represented a 
compromise between making the domain large cnough to contain the largest eddies 
that drive the flow and maintaining sufficient spatial resolution to simulate 
accurately a range of the smaller eddies generated by these large eddies. In all runs, 
the distancc bctwcen plates was set to d = 1. I n  runs 1, 3 and 5 the horizontal 
dimensions of the convective layer were chosen to accommodate two large-scale 
structures observed by Lipps (1971) in his two-dimensional simulations with shear a t  
the same Rayleigh number. These dimensions are also equal to approximately twice 
the natural wavelength of convection without shear a t  this Rayleigh number (Daly 
1974, figure 1). The size of the computational domain for Ba = 150000 is equal to 
approximately one natural wavelength of convection, and for Ra = 630000 it is 
about 20 YO less than the natural wavelength observed experimentally (Daly 1974, 
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figure 1 ) .  The large-eddy turnover times decrease by about a factor of 2 as the 
Rayleigh number is increased by factors of 4 from Ra = 35840 to Ra = 150000 and 
Ra = 630000. The integration time of the simulations extends for a t  least four large- 
eddy turnover times for runs 1,  7 and 9 without shear. For large Rayleigh numbers 
(runs 8 and lo), simulations with shear were restarted from the final fields obtained 
in runs 7 and 9 without shear. For that reason, the time of simulation in these cases 
is less than four large-eddy turnover times. Note that the time step in the shear cases 
is lower than in corresponding cases without shear, which is related to the numerical 
stability conditions on the advective terms in (5). The total number of time steps to 
complete these runs varies between 1000 and 3000. 

5.2. Ximulations for  Ra = 35840 

Runs 1, 3 and 5 were initialized assuming random temperature perturbations with 
a white-noise spectrum and either a quiescent velocity field or a linear mean velocity 
profile : 

U ( z ) = z A U ,  - $ < z < $  

for the shear runs 3 and 5 .  When condition (11)  is used in the middle of the channel 
in a form given by Grotzbach (1983, p. 251), one obtains for Ra = 35840 

The maximum value of our average grid size for runs 1, 3 and 5 was h = 0.185 
satisfying condition (19). The thickness of the thermal boundary layer was 

1 1  6 - - - M 0.14, 
T - 2 N u  

assuming Nu M 3.5. With the Chebyshev spacing in the vertical direction, we have 
three mesh points in the thermal boundary layers, excluding points a t  the boundaries 
z = -1 2 and z = +$. Therefore, the spatial resolution requirements discussed in $ 4  are 
apparently satisfied. Surprisingly, convection was dominated by three rather than 
two largc-scale structures in the computational domain. Detailed analysis of runs 1, 
3 and 5 revealed that the smallest scales were not accurately simulated, and the 
reason was traced back to an inadequate spatial resolution. Velocity and temperature 
spectra of the calculated flows decayed only by about one order of magnitude, and 
it became necessary to use a stronger condition than (ll),  namely condition (12). This 
was done by restarting low-resolution runs 1 , 3  and 5 with the same number of modes 
(3Y x 17) and decreasing lengths L, and L, by a factor of 3 to preserve only one of 
the three large-scale structures that developed in these runs (denoted in table 1 as 2, 
4 and 6).  The contour plots of the velocity fields that developed a t  the ends of 
runs 2, 4 and 6 are shown in figures 2(a),  2(b) and 2(c), respectively. 

In run 2, large-scale structures are organized in the y-direction. They have an 
appearance of rolls deformed in a wave-like pattern. In  run 4, the rolls are organized 
in the x-direction, which is also the direction of the mean velocity. The deformation 
of the rolls is less in this case than in the previous one. Finally, in run 6, the large- 
scale convective structures have the appearance of almost perfect rolls aligned in the 
direction of the mean velocity. The level of organization of the convective cells is best 
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51 1 
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FIGURE 2 .  Contour plot of‘ the vertical velocity w’ in the plane z = 0. ( a )  Run 2:  Ra = 35840, 
Ri = -a, t = 2.5. (b) Run 4: Ra = 35840, Ri = -2.0, t = 2.0. (c) Run 6:  Ra = 35840, Ri = -0.2, 
t = 1.8. Here and in the subsequent figures the solid lines correspond to positive values and dotted 
lines to negative values. 

described in terms of the longitudinal spectra of the velocity and temperature 
fields : 

S J k ,  y, z )  = I & le-ikxw’(x, y, z )  dx /1 , (20a) 

assuming rolls aligned in the x-direction. The spectra plotted in figures 3 (a) and 3 (6) 
for runs 2 and 6 are averaged over either the y- or x-direction and over several z-  
planes in the middle of the computational box. In  run 2,  the spectra in the x- and y- 
directions (figure 3 a )  are quite similar, indicating that there is a large degree of 
isotropy, especially for small scales (large k) in this run. In  run 6, the spectrum 
averaged over the x-direction contains much less energy than the spectrum averaged 
over the y-direction (figure 3 b ) .  This is a reflection of the high level of organization 
of the convective rolls in this run. We may conclude from these figures that the main 
qualitative effect of shear is to organize rolls in the direction of the mean velocity 
with the level of organization increasing for increased shear. This behaviour is in 
agreement with the results of experiments by Hart (1971) and Sparrow & Husar 
(1969) performed on an inclined heated plate, by Ingersoll (1966) performed in a 
cylindrical container with a rotating lid and by Richter & Parsons (1975) performed in 
a recirculating plane Couette flow. Numerically similar results were obtained by 
Hathaway & Somerville (1986). 
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FIGCJRE 3. Velocity spectra in the horizontal directions as a function of wavenumber k :  0, x- 
direction; +, y-direction. (a )  Run 2 :  Ra = 35840, Ri = -a. ( b )  Run 6 :  Ra = 35840, Ri = -0.2. 

The complex time dependence of the flow is reflected in the behaviour of the time 
series of vertical velocity and temperature measured at specific points within the 
convective layer. Typical time series for run 2 are shown in figure 4. It is seen that 
the flow is aperiodic, as expected. Note the correlation between the temperature and 
vertical velocity, reflecting the downflow of the cold plumest and the upflow of the 
hot ones. Since the time series are relatively short, no spectral analysis was 
attempted. The behaviour of the time series for the shear runs 4 and 6 was quite 
similar, indicating that the time dependence of the flow is caused primarily by the 
convective processes and is only marginally affected by the presence of the shear. 
This time dependence of the velocity and temperature fields results in the time 
dependence of spatially averaged quantities like the Nusselt number. The values of 
the Nusselt number ( 7 a )  computed in the middle of the layer ( z  = 0) and near the 
upper boundary ( z  = 0.46) for run 2 are shown in figure 5 as a function of time. In 
a perfectly steady state, the Nusselt numbers at both locations should be equal and 
independent of time. Instead, they oscillate, with the amplitude of oscillation at 
z = 0 about a factor of 3 larger than the amplitudc at z = 0.46. The peak in the 
Nusselt number at z = 0 always precedes the peak in the Nusselt number a t  z = 0.46. 
This behaviour was found also for higher Rayleigh numbers and the shear cases. 

Our simulation results are consistent with a model of the flow based on the 
dynamics of large-scale, quasi-two-dimensional, counter-rotating vortical cells. 
Similar models have been previously proposed in the literature (e.g. Veronis 1966). 
There appears to be an inherent dynamical instability in this cellular motion, as 
evidenced by the temporal oscillations in the Kusselt number (figure 5) and in a 
similar behaviour of other terms in the energy-balance and temperature-variance 

t I n  this paper we use the terms ‘plume’ and ‘thermal’ in the sense defined by Turner (1973). 
A ‘plume’, or buoyant jet, is a continuous buoyant region between the two plates, while ‘thermal’ 
refers to  an isolated volume of buoyant fluid detached from its source. 
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y = 0.5L,, z = 0. 
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FI(:I.KE 5. Kusselt number as a function of time at two different z-levels: 0. z = 0.46; 0, 
z = 0 ;  for Run 2. Rn = 35840, Ri = -a. 

equations (8) and (9). If an excess of heat develops a t  the lower boundary, it is drawn 
into thc rising plume between the two cells and tends to enhance thc vortical motion 
kvhile incrcasing the h'usselt number in the middle of the channel. When the 
temperature anomaly reaches the top boundary, the Nusselt number will then attain 
a peak value there, after the peak a t  the middle of the channel (cf. figure 5 ) .  If, as 
the wllular motion spreads the excess hot fluid along the top boundary, the heat flux 
through the boundary is insufficient to return this fluid to the wall temperature, the 
inertial motion of the vortcx cells will then begin pumping relatively hot fluid back 
down toward the bottom. If this effect is strong enough, it can create a reversal in 
the mean temperature gradient and a reduction of the Nussclt number in the middle 
of the channel and reduce thc rotation rate of the large cddies. This, in turn, will 
foster the development of another temperature anomaly a t  the bottom boundary, 
and the cycle will repeat. with the cells being alternately driven by buoyancy and 
inertial effwts. 

Our simulations exhibit just such a time-varying reversal of the mean temperature 
gradient in the midtllc of the channel. Such effects have also been seen experimentally 
(e.g. C'hu & Goldstein 1973) a t  Rayleigh numbers Ra 5 lo6, although not at higher 
Rayleigh numbers. There is also a temporal variation in perturbation kinetic energy 
arid heat flux. consistent with the abovc. model. 

In table 2 ,  we have gathercd time-averaged Nusselt numbers and apparent periods 
of oscillation for our runs. The periods are based on data extending for only about 
one full oscillation and must be interpretcd with caution. However, it is clear that 
they are the same order of magnitude as the large-eddy turnover times. The 
oscillations of the Xusselt number in our simulations appear to be dynamically linked 
to the largest-scale structures in our computational domain. Statistical averages 
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Run Ra Ri N U  7 T, M o  

2 35840 --OO 3.51 0.22 0.36 ~ 

6 35840 -0.2 3.54 0.22 0.20 4.02 
7 150000 --CO 5.30 0.10 0.18 ~ 

8 150000 -0.2 4.38 0.10 0.15 5.64 
9 630000 --CO 7.60 0.051 0.09 - 

10 630000 -0.3 5.80 - ~ ~ 

TABLE 2 .  Heat and momentum fluxes. Nu and M o  are the normalized heat and momentum 
fluxes [equation (7)] ,  and T, is the apparent period of oscillation of these quantities. 

computed over a large number of such convective cells that were not phase correlated 
would tend to be uniform in time. 

This unsteady process of the heat transfer is somewhat similar to the heat transfer 
in high-Rayleigh-number flows, where heated fluid is first accumulated in the 
vicinity of the boundary and is later released rapidly in the form of a buoyant 
thermal (Townsend 1959). For high-Rayleigh-number flows, the unsteady character 
of the heat transfer is also expected from Howard's (1964) theory. The unsteadiness 
of the heat flux may contribute to the large scatter of experimentally measured 
instantaneous Nusselt numbers. In fact, Deardorff & Willis (1967) report that 
instantaneous Nusselt numbers may differ by as much as 50% from their time and 
vertically averaged values, though they attribute these differences to inequality 
between averages taken along horizontal lines and averages taken over entire 
horizontal planes. 

Experimental results for Ra = 35840 give a Nusselt number lower than our run 2 
(Nu = 3.10 for air (Brown 1973), Nu = 3.20 for helium (Threlfall 1975)). This can be 
explained by the fact that the size of the computational domain, L = 2.67, is less 
than the natural wavelength of the convection, L w 4 (Daly 1976) a t  this Rayleigh 
number. The use of inadequate horizontal dimensions led consistently to higher than 
experimental heat fluxes in the numerical simulations of Grotzbach (1982, 1983) and 
Eidson (1985). 

When runs 2 and 6 are compared, we see a slight increase in the Nusselt number 
in the shear run 6. This increase of less than 1 % is probably not significant, since 
differences in Nusselt numbers for different flow realizations and the same external 
conditions are usually larger than 1 %. However, Hathaway & Somerville (1986) 
report a similar trend of a slight increase in the heat flux for increased shear in their 
simulations of convection a t  Ra = 10000. Convection without mean shear a t  both 
Ra = 10000 and Ra = 35840 has a spatial structure more complicated than the 
strictly two-dimensional roll pattern characteristic of steady convection just above 
the critical point (see figure 2a). Strong enough shear, however, increases the level of 
organization of the convective cells, as seen in figure 2 (c), and this may explain the 
increased heat transfer with higher shear. This is consistent with results of Grotzbach 
(1982, runs 7-11) and Daly (1974, figure 2), who found that the Nusselt number for 
three-dimensional convection at  a given Rayleigh number is lower than the Nusselt 
number for convection forced to be two-dimensional a t  the same Rayleigh 
number. 

For the shear runs 6 and 8 we have also computed the non-dimensional momentum 
flux Mo. It was found that the momentum flux fluctuated in time in the same manner 
as the heat flux. Averaged values of M o  are greater than averaged values of Nu by 
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10-30 Yo (table 2 ) .  For two-dimensional convective rolls parallel to thc mean 
velocity, theory predicts that M o  = Nu (Lipps 1971) when Pr = 1. Since we have 
Pr = 0.71, our results are only in approximate agreement with this prediction. I t  
should also be noted that the two-dimensional simulations of Lipps (1971) indicate 
that M o  3 N u  for Pr < 1 and M o  < N u  for Pr > 1 .  Our results indicate that for 
Pr < 1, M o  > Nu holds for three-dimensional convection as well. 

The individual terms in the kinetic-energy-balance equation are shown in figure 
6 ( a d ) .  In  run 2, without shear, the energy production takes place in the convective 
core and dissipation is large in the vicinity of the boundaries. In run 6, the energy 
production by buoyancy forces and the dissipation are controlled by the value of the 
Rayleigh number and are affected very little by the shear. The energy production by 
the shear is concentrated in the boundary layers where the effects of buoyancy are 
small. The total energy production by the shear in this run is about 1.5 times greater 
than the total energy production by the buoyancy. In  both runs, a very important 
term in the energy-balance equation is the conservative pressure diffusion term E,,. 
Its main role is to transfer energy produced by the buoyancy inside the convective 
layer towards the boundaries where it is dissipated by the dissipation term E,,,,. The 
pressure diffusion term E,, is quite often neglected or lumped together with the 
convective diffusion term E,,, in the turbulence models. Monin & Yaglom (1979, 
p. 401) state that  the pressure diffusion terms are 'more often than not ig- 
nored.. . because they are almost always unknown '. Mellor & Yamada (1982) set the 
pressure diffusion term to zero, though the term E,,, is retained in their analysis. In  
the experimental results of Deardorff & Willis (1967). the term E,, was not measured 
individually, but only the sum E,,+E,,, was calculated as the residual of other 
terms in the kinetic-energy budget. Similarly,the sum E,, +E,,, was calculated by 
Lipps (1976) in his numerical simulations. The results presented in figures 6 ( b )  and 
6 ( d )  indicate that the pressure diffusion term is generally greater than the convective 
diffusion term E,,,. This is especially true in the case of run 2 without mean shear, 
where the convective diffusion is negligible in comparison with the pressure diffusion. 
These results suggest that  the pressure diffusion should be modelled more carefully 
than is generally the practice in existing turbulence models. The importance of 
pressure diffusion in modelling the turbulent boundary layer was also recognized 
recently in the experimental work of Deardorff & Willis (1985). The effects of shear 
are most pronounced in the viscous diffusion term E N ,  in the boundary layers where 
viscous diffusion is the basic physical mechanism for transferring the energy 
produced by the shear towards rigid boundaries where it is dissipated. The large 
values of viscous diffusion and viscous dissipation in the boundary layers are related 
to the large velocity gradients at the boundaries. 

5.3. Ra = 150000 

With a resolution of 64'x33 modes, we could accurately simulate flows with a 
maximum Rayleigh number around 150000. Run 7 was initialized with a random 
temperature perturbation and was run for 2000 time steps. Run 8 was restarted from 
the results of run 7 at the last time step, switching on shear adiabatically until the 
Richardson number reached the value Ri = -0.2. Contour plots of the velocity fields 
for both runs at x = 0 are shown in figures 7 ( a )  and 7 ( b ) .  In run 8, with non-vanishing 
mean velocity, the large-scale structures are organized in the direction of the 
velocity. This time, however, the level of organization is lower than in run 6, which 
had the same Richardson number, Ri = -0.2, but a lower Rayleigh number, 
Ra = 35840. This increased randomness may be partially explained by the fact that 
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FIGURE 6. The vertical structure of the terms in the kinetic-energy-balance equation : 0, dissipation, 
u( (a,u; +a, u:) a, u,’) : 0 ,  production due to buoyancy, ag(T’w’) ; *, production due to shear, 
- (ul u;) a,(u,) ; 0, pressure diffusion, -a,(Fu;) ; A, viscous diffusion, ua,(u;(a, u,’+ at u;)) ; x , 
convective diffusion, -$3,(pzu;). (a) Production and dissipation terms for run 2 :  Ra = 35840, 
Ri = - co, t = 2.4. ( b )  Redistribution terms for run 2 .  (c) Production and dissipation terms for run 
6: Ra = 35840, Ri = -0.2, t = 1.8. ( d )  Redistribution terms for run 6. 
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FIOVRE 7. Contour plot of vertical velocity u:’ in the plane i = 0. (a) Run 7 : Rn = 150000. 
Ri = -m. f = 0.4. ( 0 )  Run 8: Ra = 1.50000. Ri = -0.2. t = 0.12. 
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F1ar.m 8 Vector plots of the perturbation velocity in the vertical planes ( a )  Run 7 : Ra = 150000, 
Ri = -a, t = 0.4 Vertical (0x2)-plane a t  y = 0.61,,. ( b )  Run 8 Ra = 150000, Ri = -0.2, t = 0.12 
Vertical (Oyz)-plane a t  x = 0.5L, The ratio of the vertical to  horizontal dimension is resealed to  the 
value 0.5 

in run 8 the ratio of the energy production due to shear to the energy production 
due to buoyancy forves is roughly 1 compared with 1.5 in run 6. 

The structure of thc velocity field is more complicated for Ra = 150000 than it was 
for Ra = 35840. Figures 8 ( a )  and 8 ( b )  show typical velocity fields for runs 7 and 8. 
These fields cannot he classified as simple deformed rolls, though remnants of the 
rolls may be seen in the right half of figure 8 (a ) .  The distinctive feature of these fields 
is the appearance of recirculating zones of fluid superimposed over each other 
vertically as in the left half of figure 8 ( a )  and the right half of figure 8 ( b ) .  When the 
vector plot of the velocity field in figure 8 ( a )  is compared to the contour plot of the 
temperature field in figure 9 ( a ) ,  it is seen that these recirculating zones correspond 
to a cold plume descending from the upper plate and a cold thermal at the lower 
plate. The plume-likr structure of the temperature field is apparent in figures 9 ( a )  
and 9 ( b ) .  with most of the plumes extending throughout the entire depth of the 
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FIGURE 9. Contour plots of'the temperature field T in the vertical planes. (a )  See caption to figure 
8 ( a ) .  (6) See caption to  figure 8 ( b ) .  The ratio of t,he vertical to horizontal dimension is rescaled to 
the value O..i. 

convective layer. However, the plumes are less clearly defined in figure 9 ( b )  than in 
figure 9 ( a ) ,  probably owing to the disruptive influence of shear. 

The appearance of the recirculating zones of the fluid a t  this Rayleigh number 
helps to explain the fact that the Nusselt number is significantly greater in run 7 
(without mean shear) than in run 8 (with mean shear). The contour plot of the 
temperature field for run 8 in the vertical plane along the direction of the mean 
velocity (figure 10) reveals the presence of closed contours tilted to  the right. Such 
closed contours were also consistently observed a t  other planes oriented in this 
direction. There is evidence that some of those contours may be interpreted as 
thermals. i.e. regions of the colder (or hotter) fluid immersed almost entirely in a 
hotter (or colder) fluid and detached from the boundary. They originate from plumes 
in the convective layer that  are torn off by the action of the shear. Since the thermals 
are immersed in the colder (hotter) fluid, they lose more heat to  the surrounding fluid 
than does a continuous plume extending between the plates, which is more organized 
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FIGURE 10. Contour plot of the temperature field T in the vertical (sz)-plane at y = 0.5L, for run 
8: Ru = 150000, Ri = -0.2, t = 0.12. The ratio of the  vertical to horizontal dimension is resealed 
to  the value 0.5. 

in the vertical direction. Thus, it appears that the organized plume should be more 
effective in transferring heat from the lower to the upper plate than the plume 
distorted by the action of the shear. In fact, in our calculations we have seen that the 
normalized correlation w’T’/(w’2T’2)~ was always less for run 8 than for run 7, 
indicating that the flow is less organized in the presence of shear a t  this higher 
Rayleigh number. These processes lead on average to a decrease in the total heat 
transfer for convection with increasing shear. This reasoning is similar to the 
explanation given by Ingersoll (1966) to interpret results of his experiments that 
showed a decrease in the Nusselt number for increasing shear, 

The difference in the eEciency of heat transfer between both cases is also reflected 
in the vertical profiles of the mean temperature shown in figure 11.  The departures 
from the linear profile characteristic of the purely conductive states are smaller in 
shear run 8 than in run 7. In  run 7, the convective core with an almost constant 
temperature consistently contained a small region in which a temperature-gradient 
reversal periodically occurred. This was not true for run 8. The behaviour of the mean 
velocity (figure 12) is quite similar to the behaviour of the mean temperature. 
It is almost constant in the convective core and changes rapidly in the boundary 
layers. The velocity-boundary-layer thickness is approximately the same as the 
temperature-boundary-layer thickness since Pr = O( 1 ) .  

The behaviour of the kinetic-energy-balance equation terms for Ra = 150000 
(figure 13) is quite similar to the runs with Ra = 35840 (figure 6). The energy 
production is concentrated in the convective core (ETur) and in the velocity 
boundary layers (Euw),  and the dissipation is relatively uniform in the core and 
rapidly increasing close to the boundaries. Among the diffusive terms, the pressure 
diffusion E,, is again quite important, reinforcing our conclusion from the previous 
section that there iu little justification for neglecting this term in turbulence 
models. 

The terms in the thermal-variance equation (9) are shown in figure 14. The 
temperature variance is produced mostly in the transition region between the 
thermal boundary layer and the convective core. The diffusive terms transfer it 
towards rigid boundaries and, to a lesser degree, to the core. The dissipation is almost 
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FIGURE 1 1 .  Vertical profiles of the mean temperature ((!P)-(T0+AT))/AT’: 0. run 7 ;  0, run 8 
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FIGURE 13. The vertical structure of the terms in the kinetic-energy-balance equation. For a 
description of the symbols, see caption to figure 6. (a)  Production and dissipation terms for run 7 : 
Ra = 1,50000, Ri = -a, t = 0.4. ( b )  Redistribution terms for run 7 .  (c) Production and dissipation 
terms for run 8:  Ra = 150000, Ri = -0.2, t = 0.18. ( d )  Redistribution terms for run 8. 

uniform in the core and increases by a factor of 3 throughout the thermal boundary 
layer. It is interesting to compare figure 14(a)  with the corresponding figure 17 of 
Deardorff & Willis (1967) presenting the thermal-variance budget for Ra = 630000. 
The qualitative behaviour of the thermal variance budget is the same in both cases, 
including sign reversals in the diffusive terms in the boundary layer. However, 
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FLGLIRE 14. The vertical structure of the terms in the temperature-variance equation: 0, 
production. -2(w’T’) d,(T) ; A, dissipation, - 2 ~ ( ( d < T ’ )  (3,T’)) ; [3, conductive diffusion, ~ 3 f  
(7”*)  ; *. convective diffusion. -a,(w’T‘2). (a) Run 7 : Ra = 150000, Ri = - co, t = 0.4. Additional 
points (UW) on this plot represent peak values of those terms in experiments of Deardorff & Willis 
(1967) at, Rn = 630000. ( h )  Run 8: Rn = 150000, Ri = -0.2, t = 0.18. 

quantitative comparison is not as good. In  figure 14(u) ,  we marked positions of the 
peaks in TPRD, T,,,, and TDIFF taken from Deardorff & Willis (1967). It is seen that 
the absolute values of the production peak and the conductive diffusion peak are 
lowcr in our case than in their paper. This is due in part to the fact that  thcy used 
a higher Rayleigh number than we did in our simulations. The absolute values of the 
conductivc diffusion and the dissipakion at the boundaries are substantially higher 
in the numerical simulations than in the experiments. Nevertheless, the numerical 
results for these quantities are self-consistent in the sense that the dissipation is 
exactly balanced by the molecular diffusion at the boundaries. A possible reason for 
this discrepancy between experimental and numerical results a t  the boundaries is 
inadequate spatial resolution in tJic boundary-layer region. It should also be noted 
that the experimental results may have errors on the order of 5 50 YO in the boundary 
regions as reported by Deardorff & Willis (1967). Thus, the accuracy of the numerical 
simulations seems to be acceptable, though higher resolution in the boundary layers 
should be tried. The most striking difference between the thermal-variance budget 
for the runs wjth and without mean shear is a substantial decrease in the peak values 
of all terms for the shear case (figure 14b) without change in their qualitative 
hehaviour as compared with the case without mean shear (figure 14a). This is 
explained by the previously discussed observation that one of the effects of the shear 
is to decrease thc mean temperature gradients in the boundary regions (figure 11) and 
to  broaden the thermal boundary layers. Since the same effect could be achieved 
without an application of the mean shear by reducing the Rayleigh number of the 
flow. wc may view the action of the shear as effectively reducing the Rayleigh 
number. This should result in the lower Nusselt number and lower peak values of the 
terms in the temperature-variance equation. 
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FIGURE 15. The vertical structrre of the r.m.s. velocities and temperatures: 0, u,,, = ( u ' ~ ) ; ;  A, 
v,,, = (d2);; +, wrmS = (wf2)1. (a) Run 7 :  Ra = 150000, Ri = -a, t = 0.4. ( b )  Run 8:  Ra = 
150000, Ri = -0.2, t = 0.18. ( c )  r.m.s. temperature T,,, = (T2)f: U ,  run 7 ;  0, run 8. 

Instantaneous vertical profiles of the r.m.s. velocities normalized by K / d  and 
temperature normalized by AT are plotted in figure 15. For the case with Ri = - co 
the profiles have the same qualitative shape as obtained by Deardorff & Willis (1967). 
The vertical velocity reaches its peak in the middle of the convective layer, while the 
horizontal velocities and temperature have peaks in the boundary layers and 
decrease inside the convective core. Such behaviour is consistent with convection 
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Run Ra x 1 ?44",J( '  w?lr,"s + 7 q r t d  References 

> ~~ - 35 840 - m  101 
7 1 50 000 - m  1 1 7  ~ 

8 1 50 000 -0  2 0 67 
- 630000 - m  114  (Deardorff &: \Villis 1967) 
- 2 500 000 - m  1 07 (Deardorff 8: \Tillis 1967) 

TABT,E 3 Ratios of channel-averaged r m s velo(2ities 

dominated by strong vertical plumes mushrooming in the boundary layers, as shown 
in contour plots of temperature (figures 10 and 11) .  The horizontal velocity field is 
not exactly isotropic, with the r.m.s. velocity in the y-direction generally greater 
than the r.m.s. velocity in the x-direction. The degree of anisotropy varies in time, 
and figure 15 (a) depicts it close to a maximum level during our run. If profiles of the 
u,,, and v,.,,, wcrc averaged over time, the degree of anisotropy would be lowered, 
though there always would be bias towards greater values of v,,, than u,,,. Some 
degree of anisotropy in our runs should be expected because our computational 
domain is too small to accommodate more than one large-scale structure. which 
generally will be anisotropic. The pcak values of the r.m.s. velocities in figure 15 ( a )  
are about a factor of 2 less than corresponding values in figure 6 of Deardorff & Willis 
(1967). This ratio is consistent with the ratio of characteristic velocities estimated on 
the basis of the amplitude (16) for Ra = 630000 and Ka = 150000, respectively. The 
values of T,,, for the unsheared case in figure 15(c) are higher than in the 
experiments of DcardorfT & Willis (1967) at Ra = 630000, but this is consistent with 
the trend towards higher T,,, with decreasing Rayleigh numbers seen in their 
experiments. 

The qualitative shape of the curves for the shear case (figure 15b,  c)  is the same as 
in the case without shear. With shear, however, the values of the r.m.s. horizontal 
velocities are about 30% greater, so that the minimum of the r.m.s. horizontal 
velocities is approximately cqual to the maximum of the r.m.s. verticd velocities. In 
general, the time-averaged r.m.s. horizontal velocities are quite isotropic. This is 
somewhat surprising since the anisotropy introduced by the mean velocity in the x- 
direction might lead one to expect that  u,,, should be greater than w,,,. Apparently, 
the convective mixing must be very efficient in equalizing the horizontal componcnts 
of thc fluctuating velocity ficld. Thc ratios of the r.m.s. velocities averaged over the 
entire cvnvective layer for runs 7 and 8 are compared in table 3 with the 
measurements of Deardorff & Willis (1967). The presence of the mean shear in run 
8 increases the horizontal velocity fluctuations substantially through the process of 
the energy transfer from the mean to the fluctuating velocity field. 

Xon-normalized one-dimensional velocity and temperature spectra (20) in the x- 
dirwtion for run 7 are plotted in figure 16. The spectra decay by more than 3 orders 
of magnitude in the wavenumber range delimited by the spatial resolution and size 
of the computational domain. This is consistcnt with an adequately resolved 
simulation. The spectra show the presence of weak secondary maxima a t  E z 4, 
which corresponds to the wavelength h = 1.25. The presence of the secondary 
maxima in the spectra a t  wavelengths 0.7 < h < 1.7 was reported by Deardorff & 
M'illis (1967). In  the numerical simulations of Qrotzbach (1983), no secondary 
maxima were observed. and he argued that long time avcraging of the data should 
always give continuous spectra without discrete peaks. However. instantaneous 
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FIGURE 16. One-dimensional velocity and temperature spectra in the x-direction : 0, velocity ; 

+, temperature: (a )  Run 7 .  ( b )  Run 8. 

spectra (or spectra averaged over short times as in experiments) may have discrete 
peaks due to the presence of slowly evolving spatial structures with these 
wavenumbers. 

5.4. Iza = 630000 

An attempt has been made to simulate turbulent convection a t  Ra = 630000, which 
corresponds to the lowest value of the Rayleigh number in the experiments of 
Deardorff & Willis (1967). Using the analysis of 94, it was determined that 
convection with Ra = 630000 and Nu w 7 could be adequately simulated with 
642 x 33 modes if L, w L, w 5. In practice, however, we have found that the 
boundary layers were not resolved accurately enough, based on an analysis of the 
kinetic-energy and the temperature-variance equations. Despite this, the convective- 
core-results are in fairly good agreement with the experiments of Deardorff & Willis 
(1967) and, for this reason, we include a short discussion of some of our results 
obtained a t  Ra = 630000. 

The Nusselt number for run 9, Nu = 7.60, is higher than Nu w 6 reported by 
Deardorff & Willis (1967), but this may be attributed to horizontal dimensions of the 
computational domain that were too small. The Nusselt number for the shear case 
drops to Nu = 5.80 (table 2) in agreement with the analysis of the results a t  Ra = 

150000. Peak values of the instantaneous r.m.s. velocities for run 9 (figure 17a) arc 
in good agreement with the experimental results. I n  the case with mean shear (run 
lo), horizontal components of the fluctuating velocity were no longer isotropic, as 
they were in run 8. The value of u,,, was consistently higher than the value of or,, 
during the time of thtl simulation. At this higher Rayleigh number and lower relative 
shear (Ri = -0.3 versus Ri = -0.2 in run 7), the mixing action of the convection was 
not strong enough to equalize the horizontal velocities. Figure 17 ( b )  shows the terms 
in the temperature-variance budget. Although the qualitative behaviour of these 
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FIGURE 17. Run 9: Ra = 630000; Ri = - co; t = 0.02. (a) The vertical structure of the r.m.s. 
velocities. For a description of the symbols, see caption to figure 15. Points denoted DW represent 
expt'rimt'ntal results of Deardorff & Willis (1967). (b)  The vertical structure of the terms in the 
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curves is the same as in the experiments (Deardorff & Willis 1967, figure 17), the 
absolute peak values of the individual terms in the boundary layers are substantially 
ovcrcstimatcd, with the accuracy deteriorating as the boundary is approached. It 
becomes apparent that the vertical resolution a t  the boundaries should be increased 
even though we already have five mesh points in the boundary layer ST z 1/(2Nu). 
The requirement to have a t  least three mesh points in the boundary layer S, in order 
to simulate turbulent convection accurately (Grotzbach 1983) seems to be too weak 
a t  high Rayleigh numbers. In  the high-resolution simulations of Eidson et al. (1986), 
eight points in the thermal boundary layer were used to resolve it adequately (a total 
of 65 points in the vertical a t  Ra = 380000). Nevertheless, most of the gross features 
of the convection outside the boundary layers are reproduced adequately even with 
lower resolution. This is a reflection of the fact that  the dynamics of the convective 
core arc governed by the large-scale spatial structures, which are easily rcsolvcd even 
with a limited number of mesh points. This also explains an apparent success of 
subgrid-scale modelling of turbulent convection (Eidson 1985 ; Deardorff 1970), 
which is a way of accurately capturing the dynamics of the large scales and 
approximating the dynamics of the small scales. 

6. Conclusions 
In  this paper we have reported results of direct numerical simulations of natural 

convection in plane Couette flow. To solve the equations of motion ( 5 )  we have 
employed an accurate numerical pseudospectral code. The highest resolution used in 
our simulations corresponds to 642 modes in the horizontal and 33 in the vertical. All 
simulated flows were a t  sufficiently high Rayleigh numbers to produce turbulent 
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convection ( R a  > 12000). It was found that the main qualitative effect of shear is to 
organize large-scale convective structures in the direction of the mean velocity. The 
effect of shear on heat transfer depends on the Rayleigh number. For moderate 
Rayleigh numbers, 12000 5 Ra 5 50000 (runs 1-6), the level of turbulence is small, 
and shear is capable of organizing the convective structures in the form of quasi-two- 
dimensional rolls. This can lead to a slightly higher heat transfer than for less 
organized convection without shear at the same Rayleigh number. At larger 
Rayleigh numbers (Ma 2 150000), shear cannot organize the convection into a two- 
dimensional state. In fact, a t  these higher Rayleigh numbers, shear seems to decrease 
the level of organization of the convective structures by tearing off and disrupting 
plumes transferring heat between the plates. This effectively decreases the heat 
transfer in shear run 8. 

The unsteadiness of the convection is reflected in the complex time dependence of 
the velocity and temperature fields as well as global quantities such as the Nusselt 
number. The oscillatory time behaviour of the Nusselt number is caused by the 
action of the convective thermals pumping hot fluid toward the upper plate and the 
inertial effects returning some of this fluid back down towards the lower plate. This 
last process slows the convective rolls until increased heat transfer at the lower 
boundary speeds them up again. 

An analysis of the energy-balance equation indicates that  most of the energy 
production due to buoyancy effects occurs in a relatively uniform convective core 
and the energy production due to shear effects is concentrated in the boundary 
layers. It was found that among diffusive terms, the pressure-diffusion term was 
quite important in redistributing kinetic energy inside the convective layer, contrary 
to the assumptions made in some turbulence models. 

The apparent connection between the level of organization of the convection and 
the heat transfer seen in our simulations suggests that  it may be possible to increase 
heat transfer at a given Rayleigh number by manipulating or forcing the large-scale 
convective structures. Some possible ways of achieving this goal are the subject of 
ongoing investigation by the present authors. 

This work was supported by the Department of Energy under Contract No. 
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